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Invited Review

The anti-inflammatory effect of exercise

Anne Marie W. Petersen and Bente Klarlund Pedersen
Centre of Inflammation and Metabolism at The Copenhagen Muscle Research Centre and The
Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

Petersen, Anne Marie W., and Bente Klarlund Pedersen. The anti-inflammatory
effect of exercise. J Appl Physiol 98: 1154–1162, 2005; doi:10.1152/japplphysiol.
00164.2004.—Regular exercise offers protection against all-cause mortality, pri-
marily by protection against cardiovascular disease and Type 2 diabetes mellitus.
The latter disorders have been associated with chronic low-grade systemic inflam-
mation reflected by a two- to threefold elevated level of several cytokines. Adipose
tissue contributes to the production of TNF-�, which is reflected by elevated levels
of soluble TNF-� receptors, IL-6, IL-1 receptor antagonist, and C-reactive protein.
We suggest that TNF-� rather than IL-6 is the driver behind insulin resistance and
dyslipidemia and that IL-6 is a marker of the metabolic syndrome, rather than a
cause. During exercise, IL-6 is produced by muscle fibers via a TNF-independent
pathway. IL-6 stimulates the appearance in the circulation of other anti-inflamma-
tory cytokines such as IL-1ra and IL-10 and inhibits the production of the
proinflammatory cytokine TNF-�. In addition, IL-6 enhances lipid turnover, stim-
ulating lipolysis as well as fat oxidation. We suggest that regular exercise induces
suppression of TNF-� and thereby offers protection against TNF-�-induced insulin
resistance. Recently, IL-6 was introduced as the first myokine, defined as a cytokine
that is produced and released by contracting skeletal muscle fibers, exerting its
effects in other organs of the body. Here we suggest that myokines may be involved
in mediating the health-beneficial effects of exercise and that these in particular are
involved in the protection against chronic diseases associated with low-grade
inflammation such as diabetes and cardiovascular diseases.

cytokines; atherosclerosis; diabetes; aging; physical activity

CHRONIC DISEASES ARE THE LARGEST cause of death in the world,
led by cardiovascular disease (17 million deaths in 2002)
followed by cancer (7 million deaths), chronic lung diseases (4
million), and diabetes mellitus (almost 1 million) (160). Not
only are cardiovascular disease and Type 2 diabetes leading
causes of death and illness in developed countries, but these
chronic diseases are becoming the dominating health problem
worldwide (79).

Regular exercise offers protection against all-cause mortal-
ity, primarily by protection against atherosclerosis, Type 2
diabetes, colon cancer, and breast cancer (7). In addition,
physical training is effective in the treatment of patients with
ischemic heart disease (55), heart failure (108), Type 2 diabetes
(11), and chronic obstructive pulmonary disease (66).

Atherosclerosis is characterized by the accumulation of
lipids and fibrous elements in the large arteries. The current
views of the pathophysiology of atherosclerosis are changing.
The link between lipids and atherosclerosis dominated our
thinking until the 1970s (119). The emerging knowledge of
vascular biology led to a focus on growth factors and the
proliferation of smooth muscle cells in the 1970s and 1980s
(119). Over the past decade, however, there has been much
focus on the role of inflammation in the pathogenesis of
atherosclerosis (68, 69). Furthermore, inflammation has been
suggested to be a key factor in insulin resistance (24).

Low-grade chronic inflammation is reflected by increased
C-reactive protein (CRP) concentrations and increased sys-
temic levels of some cytokines (118) and several reports
investigating various markers of inflammation in different
population groups have confirmed an association between
low-grade systemic inflammation on one hand and the meta-
bolic syndrome, Type 2 diabetes, and atherosclerosis on the
other (5, 30, 36, 39, 40, 48, 70, 80, 110, 152).

Given that chronic low-grade systemic inflammation may be
involved in atherosclerosis and diabetes pathogenesis (24, 69)
and given the recent finding that physical activity induces an
increase in the systemic levels of a number of cytokines with
anti-inflammatory properties, we discuss the possibility that
physical exercise exerts anti-inflammation and thereby protects
against chronic medical disorders associated with low-grade
systemic inflammation.

THE PLAYERS IN CHRONIC LOW-GRADE INFLAMMATION

The local response to infections or tissue injury involves the
production of cytokines that are released at the site of inflam-
mation. Cytokines are small polypeptides, which were origi-
nally discovered to have immunoregulatory roles (2, 3). Some
of these cytokines facilitate an influx of lymphocytes, neutro-
phils, monocytes, and other cells. The local inflammatory
response is accompanied by a systemic response known as the
acute-phase response. This response includes the production of
a large number of hepatocyte-derived acute phase proteins,
such as CRP and can be mimicked by the injection of the
cytokines TNF-�, IL-1�, and IL-6 into laboratory animals or

Address for reprint requests and other correspondence: B. K. Pedersen,
Dept. of Infectious Diseases, Rigshospitalet, Section 7641, Blegdamsvej 9,
DK-2100, Copenhagen, Denmark (E-mail: bkp@rh.dk).

J Appl Physiol 98: 1154–1162, 2005;
doi:10.1152/japplphysiol.00164.2004.

8750-7587/05 $8.00 Copyright © 2005 the American Physiological Society http://www. jap.org1154

 on M
arch 30, 2008 

jap.physiology.org
D

ow
nloaded from

 

http://jap.physiology.org


humans (2, 3, 25, 25). The initial cytokines in the cytokine
cascade are (named in order) TNF-�, IL-1�, IL-6, IL-1 recep-
tor antagonist (IL-1ra), and soluble TNF-� receptors (sTNF-
R). IL-1ra inhibits IL-1 signal transduction and sTNF-R rep-
resents the naturally occurring inhibitors of TNF-� (2, 3, 25).
In response to an acute infection or trauma, the cytokines and
cytokine inhibitors may increase severalfold and decrease
when the infection or trauma is healed. Chronic low-grade
systemic inflammation has been introduced as a term for
conditions in which a typically two- to threefold increase in the
systemic concentrations of TNF-�, IL-1, IL-6, IL-1ra, sTNF-R,
and CRP is reflected. In the latter case, the stimuli for the
cytokine production are not known, but it is assumed that the
origin of TNF in chronic low-grade systemic inflammation is
mainly the adipose tissue (23, 54).

CHRONIC LOW-GRADE INFLAMMATION IN AGING
AND DISEASE

Chronic low-grade inflammation accompanies aging as well
as some chronic medical disorders. During aging, increased
plasma levels of TNF-� (13, 17, 28, 96), IL-6, IL-1ra (28),
sTNF-R (13, 15, 22), and CRP (4) have been demonstrated.
These cytokines work in a network, and their levels are found
to intercorrelate, e.g., plasma levels of TNF-� were positively
correlated with IL-6, sTNF-R, and CRP in centenarians. How-
ever, although a linear relationship was found for TNF-� and
IL-6, high levels of TNF-�, but not IL-6, were associated with
dementia and atherosclerosis (13). Also, elevated levels of
circulating IL-6 have been associated with several disorders.
Increased levels of both TNF-� and IL-6 have been observed
in obese individuals, in smokers, and in patients with Type 2
diabetes mellitus (150), and plasma concentrations of IL-6
have been shown to predict all-cause mortality as well as
cardiovascular mortality (49, 151). Furthermore, plasma con-
centrations of IL-6 and TNF-� have been shown to predict the
risk of myocardial infarction in several studies (114, 115), and
recently it was shown that the CRP level is a stronger predictor
of cardiovascular events than the low-density lipoprotein cho-
lesterol level and that CRP adds prognostic information to that
conveyed by the Framingham risk score (116).

LINKING INFLAMMATION, INSULIN RESISTANCE,
AND ATHEROSCLEROSIS

Given that low-grade systemic inflammation is found in
patients with obesity, insulin resistance, Type 2 diabetes, and
atherosclerosis, the question is whether a causal link exists
between inflammation on one hand and insulin resistance and
dyslipidemia on the other. In the following, we will discuss the
individual roles of TNF-� and IL-6.

There is accumulating data to suggest that TNF-� plays a
direct role in the metabolic syndrome. Patients with diabetes
demonstrate high expression of TNF-� in skeletal muscle (122)
and in plasma (35, 74, 159), and it is likely that adipose tissue,
which produces TNF-�, is the main source of the circulating
TNF-� (23, 54). Accumulating data point to an effect of
TNF-� on insulin signaling. TNF-� impairs insulin-stimulated
rates of glucose storage in cultured human muscle cells (47)
and impairs insulin-mediated glucose uptake in rats (161).
Obese mice with a gene knockout of the TNF-� are protected
from insulin resistance (147), and inhibition of TNF-� with an

anti-TNF-� antibody treatment improves the insulin sensitivity
in the insulin resistance rat model (9). TNF-� has direct
inhibitory effects on insulin signaling (52, 53, 104), and in
addition it has been proposed that TNF-� causes insulin resis-
tance in vivo indirectly by increasing the release of free fatty
acids from adipose tissue (10, 44, 46, 125, 126). TNF-�
increases lipolysis in human (121, 162), rat (10, 44, 46), and
3T3-L1 adipocytes (90, 113, 125, 126). Recently, it was found
that TNF-� had no effect on muscle fatty acid oxidation but
increased fatty acid incorporation into diacylglycerol, which
may be involved in the development of TNF-induced insulin
resistance in skeletal muscle (12).

With regard to IL-6, its role in insulin resistance is highly
controversial. In humans, circulating IL-6 levels may (6, 107)
or may not (18, 106) be associated with insulin resistance.
Infusion of recombinant human (rh) IL-6 into resting healthy
humans does not impair whole body, lower limb, or subcuta-
neous adipose tissue glucose uptake or endogenous glucose
production (71, 132), although IL-6 contributes to the contrac-
tion-induced increase in endogenous glucose production (32).

When diabetes patients were given rhIL-6 infusion, plasma
concentrations of insulin declined to levels comparable with
that in age and body mass index-matched healthy controls,
indicating that the IL-6 enhanced insulin sensitivity (105). In
vitro studies demonstrate that IL-6 can induce insulin resis-
tance in isolated 3T3-L1 adipocytes (120) and in mice (61).
However, the IL-6 concentrations applied in the latter studies
were highly supraphysiological with possibly little relevance
for human physiology. With regard to the effect of IL-6 on
glucose uptake in myotubes, a recent publication by Weigert et
al. (157) demonstrated no inhibitory effect of IL-6 on insulin
action and glycogen synthesis. Interestingly, IL-6 knockout
mice develop impaired glucose tolerance, which is reverted by
IL-6 (153).

AMP-activated protein kinase (AMPK) activity stimulates a
variety of processes that increase ATP generation, including
fatty acid oxidation and glucose transport in skeletal muscle
(19). Incubation with IL-6 increases the phosphorylation of
AMPK (an indicator of its activation) and that of its target
molecule, acetyl CoA carboxylase, in skeletal muscles. In
addition, AMPK activity and acetyl CoA carboxylase levels
were very low in IL-6 knockout mice, suggesting a role of IL-6
in the regulation of AMPK activity. These data suggest that
IL-6 activation of AMPK is dependent on the presence of
IL-6 (60).

A number of studies indicate that IL-6 enhances lipolysis
(12, 87, 97, 105, 136).

To assess whether IL-6 increases fat oxidation, L6 myotubes
were treated with IL-6 or 5-aminoimidazole-4-carboxamide
riboside (AICAR), a compound known to increase lipid oxi-
dation. Both IL-6 and AICAR markedly increased oxidation of
[14C]palmitate compared with control (105). In accordance,
Wallenius et al. (153) demonstrated that IL-6-deficient mice
developed mature-onset obesity and insulin resistance. In ad-
dition, when the mice were treated with IL-6, there was a
significant decrease in body fat mass in the IL-6 knockout but
not in the wild-type mice. To determine whether physiological
concentrations of IL-6 affected lipid metabolism, our group
administered physiological concentrations of rhIL-6 to healthy
young and elderly humans as well as patients with Type 2
diabetes (105, 149). The latter studies identified IL-6 as a
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potent modulator of fat metabolism in humans, increasing
lipolysis and fat oxidation without causing hypertriacylglycer-
olemia.

Of note, whereas it is known that both TNF-� and IL-6
induce lipolysis, there is only published evidence to suggest
that IL-6 induces fat oxidation. A recent clinical trial demon-
strated that anti-TNF-� treatment enhanced high-density li-
poprotein without influencing low-density lipoprotein, indicat-
ing that TNF-� causes a risk lipid profile (109). In contrast,
anti-IL-6 receptor treatment induced increase of both high-
density and low-density lipoprotein (86).

High levels of IL-6 and TNF-� in patients with the meta-
bolic syndrome are associated with truncal fat mass (101), and
both TNF-� and IL-6 are produced in adipose tissue (23, 41,
76, 145). Given the different biological profiles of TNF-� and
IL-6 and given that TNF-� can trigger IL-6 release, one theory
holds that it is adipose tissue-derived TNF-� that actually is the
“driver” behind the metabolic syndrome and that locally pro-
duced TNF-� causes increased systemic levels of IL-6.

In this line, we find that genetic epidemiology also supports
a differential role for IL-6 and TNF-�. IL-6 is largely regulated
at the level of expression, because of the rapid plasma clear-
ance of this cytokine (20). Four polymorphisms exist in the
IL-6 promoter, although most population-based studies focus
on the G-174-C, where the C allele shows lower IL-6 expres-
sion than the G allele (141). The G-174-C genotype is a disease
“risk genotype” associated with cardiovascular disease and
all-cause mortality in old humans (14), as well as insulin
resistance and low energy expenditure (65). Compared with the
G-308G genotype, the -308A allele of the TNF-� gene has
been shown to increase transcription twofold and, therefore,
TNF-� concentration (63, 158). Subjects with risk genotypes
for both TNF-� (AA) and IL-6 (CC) have the highest incidence
of diabetes (64), favoring the theory that high levels of TNF-�
and low production of IL-6 are determining factors in the
metabolic syndrome. Given that TNF-� mainly works locally,
TNF-� transcription may not always be reflected in enhanced
systemic levels of TNF-�. Rather, TNF-� may stimulate IL-6
production and consequently IL-1ra and CRP. In our view,
chronically elevated levels of IL-6, IL-1ra, and CRP are likely
to reflect local ongoing TNF-� production (Fig. 1).

CYTOKINE RESPONSES TO SEPSIS AND EXERCISE

Mostly, studies on cytokines come from sepsis research. In
sepsis and experimental models of sepsis, the cytokine cascade
consists of (named in order) TNF-�, IL-1�, IL-6, IL-1ra,
sTNF-R, and IL-10 (3). The first two cytokines in the cytokine
cascade are TNF-� and IL-1�, which are produced locally.
These cytokines are usually referred to as proinflammatory
cytokines (26). TNF-� and IL-1 stimulate the production of
IL-6, which has been classified as both a pro- and an anti-
inflammatory cytokine (142). The cytokine response to exer-
cise differs from that elicited by severe infections (33, 98, 100,
138). The fact that the classic proinflammatory cytokines,
TNF-� and IL-1�, in general do not increase with exercise
indicates that the cytokine cascade induced by exercise mark-
edly differs from the cytokine cascade induced by infections.
Typically, IL-6 is the first cytokine present in the circulation
during exercise. The level of circulating IL-6 increases in an

exponential fashion (up to 100-fold) in response to exercise
and declines in the postexercise period (33, 98, 100, 138).

Another finding in relation to exercise is increased circulat-
ing levels of well-known anti-inflammatory cytokines, cyto-
kine inhibitors such as IL-1ra and sTNF-R (93, 95).

Taken together, exercise provokes an increase primarily in
IL-6, followed by an increase in IL-1ra and IL-10. The appear-
ance of IL-6 in the circulation is by far the most marked and its
appearance precedes that of the other cytokines (Fig. 2).

IL-6 RESPONSE TO EXERCISE

The IL-6 response to exercise has recently been reviewed
(33, 98–100). A marked increase in circulating levels of IL-6
after exercise without muscle damage has been a remarkably
consistent finding (21, 29, 43, 50, 81, 82, 84, 85, 88, 91–95,
117, 128, 129, 130, 134, 135, 139, 144). Plasma-IL-6 increases
in an exponential fashion with exercise and is related to
exercise intensity, duration, the mass of muscle recruited, and
one’s endurance capacity (33, 98–100).

Research within the past few years has demonstrated that
IL-6 mRNA is upregulated in contracting skeletal muscle (34,
56, 83, 94, 130, 133) and that the transcriptional rate of the
IL-6 gene is markedly enhanced by exercise (58). In addition,
it has been demonstrated that the IL-6 protein is expressed in
contracting muscle fibers (51, 103) and that IL-6 is released
(133) from skeletal muscle during exercise whereas this is not
the case for TNF-� (133, 135). Even moderate exercise has
major effects on muscle-derived IL-6. Young healthy individ-
uals performed 3 h of dynamic two-legged knee-extensor
exercise at 50% of their individual maximal power output. This
exercise induced an only moderate increase in heart rate (113
to 122 beats/min) but induced a 16-fold increase in IL-6
mRNA, a 20-fold increase in plasma-IL-6, and a marked IL-6
release from working muscle (38). When the same model was
applied in elderly healthy untrained subjects, even higher
amounts of IL-6 were released from working muscle during
exercise at the same relative intensity (102).

Several studies have reported that carbohydrate ingestion
attenuates elevations in plasma IL-6 during both running and

Fig. 1. Chronic low-grade systemic inflammation. The cytokine TNF-� is
produced in adipose tissue. TNF-� stimulates the production of IL-6 in adipose
tissue and blood mononuclear cells. IL-6 enhances the systemic levels of IL-1
receptor antagonist (IL-1ra), soluble TNF receptor (TNF-R), IL-10, and C-re-
active protein (CRP).
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cycling (81, 85). During exercise, carbohydrate ingestion ex-
erts its effect at the posttranscriptional level of IL-6 (34, 128),
whereas low muscle glycogen concentration further enhances
IL-6 mRNA and transcription rate for IL-6 (58, 130). There-
fore, preexercise intramuscular glycogen content appears to be
an important stimulus for the IL-6 gene transcription, and it
appears that muscle-derived IL-6 acts as an energy sensor.
Recent data from our group have demonstrated that infusion of
rhIL-6 in human subjects can exert an increase in IL-6 gene
expression in skeletal muscle (59), thus demonstrating that
muscle-derived IL-6 is regulated by an autocrine mechanism.
A number of studies (77, 129, 146) have demonstrated that
monocytes are not major contributors to the IL-6 response to
exercise. However, small amounts of IL-6 are also produced
and released from adipose tissue (71), and studies indicate that
also the brain (89) and peritendon tissue (67) may release IL-6
in response to exercise. Although we have yet to determine the
precise biological action of muscle-derived IL-6, accumulating
data support the hypothesis that the role of IL-6 released from
contracting muscle during exercise is to act in a hormonelike
manner to mobilize extracellular substrates and/or augment
substrate delivery during exercise. In addition, IL-6 has impor-
tant anti-inflammatory effects (Fig. 3).

ANTI-INFLAMMATORY EFFECTS OF IL-6

Data suggest that IL-6 exerts inhibitory effects on TNF-�
and IL-1 production. IL-6 inhibits lipopolysaccharide (LPS)-

induced TNF-� production both in cultured human monocytes
and in the human monocytic line U937 (123), and levels of
TNF-� are markedly elevated in anti-IL-6-treated mice and in
IL-6-deficient knockout mice (72, 75), indicating that circulat-
ing IL-6 is involved in the regulation of TNF-� levels. In
addition, rhIL-6 infusion inhibits the endotoxin-induced in-
crease in circulating levels of TNF-� in healthy humans (127).
The anti-inflammatory effects of IL-6 are also demonstrated by
the fact that IL-6 stimulates the production of IL-1ra and IL-10
(131). Furthermore, IL-6 stimulates the release of soluble
TNF-� receptors, but not IL-1� and TNF-� (142), and appears
to be the primary inducer of the hepatocyte-derived acute-
phase proteins, many of which have anti-inflammatory prop-
erties (2).

ANTI-INFLAMMATORY EFFECTS OF IL-10, IL-1RA, AND CRP

The appearance of IL-10 and IL-1ra in the circulation after
exercise also contributes to mediating the anti-inflammatory
effects of exercise. The concept that IL-10 acts as an anti-
inflammatory molecule was suggested primarily by studies
showing inhibition of the synthesis of a large spectrum of
proinflammatory cytokines by different cells, particularly of
the monocytic lineage. Thus IL-10 inhibits the production of
IL-1�, IL-1�, and TNF-� as well as the production of chemo-
kines, including IL-8 and macrophage inflammatory protein-�
from LPS-activated human monocytes (78, 111). These cyto-
kines and chemokines play a critical role in the activation of
granulocytes, monocytes/macrophages, natural killer cells, and
T and B cells and in their recruitment to the sites of inflam-
mation. Taken together, these observations suggested that
IL-10 plays an important role in orchestrating the inflammatory
reaction involving macrophage/monocyte activation in partic-
ular. Addition of IL-10 to LPS-stimulated human mononuclear
cells and neutrophils suppresses cytokine synthesis, mainly via
the inhibition of the transcription of their corresponding genes
(154, 155). IL-10 also prevents cytokine synthesis by posttran-

Fig. 3. Contracting muscle fibers produce and release IL-6, which induces
several metabolic effects. IL-6 induces lipolysis and fat oxidation and is
involved in glucose homeostasis during exercise. In addition, IL-6 has strong
anti-inflammatory effects and may inhibit TNF-induced insulin resistance.
sTNF-R, soluble TNF receptor.

Fig. 2. In sepsis (A), the cytokine cascade within the first few hours consists
of TNF-�, IL-1�, IL-6, IL-1ra, TNF-R, and IL-10. The cytokine response to
exercise (B) does not include TNF-� and IL-1 but does show a marked increase
in IL-6, which is followed by IL-1ra, TNF-R, and IL-10. Increased CRP levels
do not appear until 8–12 h later.
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scriptional mechanisms, as shown in human macrophages
where the inhibition of IL-1�, IL-1�, and TNF-� release
induced by LPS is a direct consequence of mRNA degradation
of their corresponding genes (8).

Whereas IL-10 influences multiple cytokines, the biological
role of IL-1ra is to inhibit signaling transduction through the
IL-1 receptor complex (27). The IL-1ra is a member of the IL-1
family that binds to IL-1 receptors but does not induce any
intracellular response. Studies have demonstrated that IL-1ra is
also an acute phase protein (42) because both cultured human
hepatocytes and the human hepatoma cell line HepG2 produce
IL-1ra in response to stimulation with IL-6.

A small increase of CRP levels is seen the day after exercise
of longer duration (98). CRP has a role both in the induction of
anti-inflammatory cytokines in circulating monocytes and in
the suppression of the synthesis of proinflammatory cytokines
in tissue macrophages (112).

ANTI-INFLAMMATORY EFFECTS OF EXERCISE

Cross-sectional studies demonstrate an association between
physical inactivity and low-grade systemic inflammation in
healthy subjects (1, 31, 45, 62, 73, 124, 140, 156) in elderly
people (16), as well as in patients with intermittent claudication
(143). These correlational data do, however, not provide any
information with regard to a possible causal relationship. The
finding in two longitudinal studies that regular training induces
a reduction in CRP level (31, 73) suggests that physical activity
as such may suppress systemic low-grade inflammation. To
study whether acute exercise induces a true anti-inflammatory
response, our laboratory developed a model of “low-grade
inflammation” in which we injected a low dose of Escherichia
coli endotoxin to healthy volunteers, who had been randomized
to either rest or exercise before endotoxin administration. In
resting subjects, endotoxin induced a two- to threefold increase
in circulating levels of TNF-�. In contrast, when the subjects
performed 3 h of ergometer cycling and received the endotoxin
bolus at 2.5 h, the TNF-� response was totally blunted (127).
The finding that exercise suppresses endotoxin-induced TNF-�
production was supported by a recent study demonstrating that
exercise normalizes overexpression of TNF-� in TNF-R
knockout mice (57).

MECHANISM UNDERLYING THE ANTI-INFLAMMATORY
RESPONSE OF ACUTE EXERCISE

After exercise, the high circulating levels of IL-6 are fol-
lowed by an increase in IL-1ra and IL-10, and the latter two
anti-inflammatory cytokines can be induced by IL-6 (131).

Therefore, IL-6 induces an anti-inflammatory environment
by inducing the production of IL-1ra and IL-10, but it also
inhibits TNF-� production, as suggested by in vitro (37) and
animal studies (72, 75). In addition, rhIL-6 infusion, which
causes an increase in plasma IL-6 mimicking the exercise-
induced IL-6 response, inhibited endotoxin-induced increase in
plasma TNF-� in humans (127). However, exercise is likely to
suppress TNF-� also via IL-6-independent pathways, as dem-
onstrated by the finding of a modest decrease of TNF-� after
exercise in IL-6 knockout mice (57). High levels of epineph-
rine are provoked by exercise, and epinephrine infusion has
been shown to blunt the appearance of TNF-� in response to
endotoxin in vivo (148). Because epinephrine infusion induces

only a small increase in IL-6 (134), the mechanism whereby
epinephrine inhibits TNF-� production is not clear. However,
it appears that epinephrine and IL-6 inhibit endotoxin-induced
appearance of TNF-� via independent mechanisms.

The possibility exists that, with regular exercise, the anti-
inflammatory effects of an acute bout of exercise will protect
against chronic systemic low-grade inflammation, but such a
link between the acute effects of exercise and the long-term
benefits has not yet been proven. Given that the atherosclerotic
process is characterized by inflammation, one alternative ex-
planation would be that regular exercise, which offers protec-
tion against atherosclerosis, indirectly offers protection against
vascular inflammation and hence systemic low-grade inflam-
mation.

In conclusion, regular exercise protects against diseases
associated with chronic low-grade systemic inflammation. This
long-term effect of exercise may be ascribed to the anti-
inflammatory response elicited by an acute bout of exercise,
which is partly mediated by muscle-derived IL-6. Physiologi-
cal concentrations of IL-6 stimulate the appearance in the
circulation of the anti-inflammatory cytokines IL-1ra and IL-10
and inhibit the production of the proinflammatory cytokine
TNF-�. Moreover, IL-6 stimulates lipolysis as well as fat
oxidation. The anti-inflammatory effects of exercise may offer
protection against TNF-induced insulin resistance. Recently,
our group proposed that IL-6 and other cytokines, which are
produced and released by skeletal muscles, exerting their
effects in other organs of the body, should be named myokines
(99). Here we suggest that myokines may be involved in
mediating the health-beneficial effects of exercise and play
important roles in the protection against diseases associated
with low-grade inflammation.
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